Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1.

Identifieur interne : 002D51 ( Main/Exploration ); précédent : 002D50; suivant : 002D52

Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1.

Auteurs : Joshua P. Adams [États-Unis] ; Ardeshir Adeli ; Chuan-Yu Hsu ; Richard L. Harkess ; Grier P. Page ; Claude W. Depamphilis ; Emily B. Schultz ; Cetin Yuceer

Source :

RBID : pubmed:21504875

Descripteurs français

English descriptors

Abstract

Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation.

DOI: 10.1093/jxb/err025
PubMed: 21504875
PubMed Central: PMC3134336


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1.</title>
<author>
<name sortKey="Adams, Joshua P" sort="Adams, Joshua P" uniqKey="Adams J" first="Joshua P" last="Adams">Joshua P. Adams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA. jpa18@msstate.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry, Mississippi State University, Mississippi State, MS 39762</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adeli, Ardeshir" sort="Adeli, Ardeshir" uniqKey="Adeli A" first="Ardeshir" last="Adeli">Ardeshir Adeli</name>
</author>
<author>
<name sortKey="Hsu, Chuan Yu" sort="Hsu, Chuan Yu" uniqKey="Hsu C" first="Chuan-Yu" last="Hsu">Chuan-Yu Hsu</name>
</author>
<author>
<name sortKey="Harkess, Richard L" sort="Harkess, Richard L" uniqKey="Harkess R" first="Richard L" last="Harkess">Richard L. Harkess</name>
</author>
<author>
<name sortKey="Page, Grier P" sort="Page, Grier P" uniqKey="Page G" first="Grier P" last="Page">Grier P. Page</name>
</author>
<author>
<name sortKey="Depamphilis, Claude W" sort="Depamphilis, Claude W" uniqKey="Depamphilis C" first="Claude W" last="Depamphilis">Claude W. Depamphilis</name>
</author>
<author>
<name sortKey="Schultz, Emily B" sort="Schultz, Emily B" uniqKey="Schultz E" first="Emily B" last="Schultz">Emily B. Schultz</name>
</author>
<author>
<name sortKey="Yuceer, Cetin" sort="Yuceer, Cetin" uniqKey="Yuceer C" first="Cetin" last="Yuceer">Cetin Yuceer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21504875</idno>
<idno type="pmid">21504875</idno>
<idno type="doi">10.1093/jxb/err025</idno>
<idno type="pmc">PMC3134336</idno>
<idno type="wicri:Area/Main/Corpus">002E40</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E40</idno>
<idno type="wicri:Area/Main/Curation">002E40</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E40</idno>
<idno type="wicri:Area/Main/Exploration">002E40</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1.</title>
<author>
<name sortKey="Adams, Joshua P" sort="Adams, Joshua P" uniqKey="Adams J" first="Joshua P" last="Adams">Joshua P. Adams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA. jpa18@msstate.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forestry, Mississippi State University, Mississippi State, MS 39762</wicri:regionArea>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adeli, Ardeshir" sort="Adeli, Ardeshir" uniqKey="Adeli A" first="Ardeshir" last="Adeli">Ardeshir Adeli</name>
</author>
<author>
<name sortKey="Hsu, Chuan Yu" sort="Hsu, Chuan Yu" uniqKey="Hsu C" first="Chuan-Yu" last="Hsu">Chuan-Yu Hsu</name>
</author>
<author>
<name sortKey="Harkess, Richard L" sort="Harkess, Richard L" uniqKey="Harkess R" first="Richard L" last="Harkess">Richard L. Harkess</name>
</author>
<author>
<name sortKey="Page, Grier P" sort="Page, Grier P" uniqKey="Page G" first="Grier P" last="Page">Grier P. Page</name>
</author>
<author>
<name sortKey="Depamphilis, Claude W" sort="Depamphilis, Claude W" uniqKey="Depamphilis C" first="Claude W" last="Depamphilis">Claude W. Depamphilis</name>
</author>
<author>
<name sortKey="Schultz, Emily B" sort="Schultz, Emily B" uniqKey="Schultz E" first="Emily B" last="Schultz">Emily B. Schultz</name>
</author>
<author>
<name sortKey="Yuceer, Cetin" sort="Yuceer, Cetin" uniqKey="Yuceer C" first="Cetin" last="Yuceer">Cetin Yuceer</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphatases (genetics)</term>
<term>Adenosine Triphosphatases (metabolism)</term>
<term>Aminoacyltransferases (genetics)</term>
<term>Aminoacyltransferases (metabolism)</term>
<term>Genotype (MeSH)</term>
<term>Homeostasis (MeSH)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Zinc (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adenosine triphosphatases (génétique)</term>
<term>Adenosine triphosphatases (métabolisme)</term>
<term>Aminoacyltransferases (génétique)</term>
<term>Aminoacyltransferases (métabolisme)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Génotype (MeSH)</term>
<term>Homéostasie (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Zinc (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Aminoacyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>Aminoacyltransferases</term>
<term>Plant Proteins</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adenosine triphosphatases</term>
<term>Aminoacyltransferases</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adenosine triphosphatases</term>
<term>Aminoacyltransferases</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Zinc</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genotype</term>
<term>Homeostasis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génotype</term>
<term>Homéostasie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21504875</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>62</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1.</ArticleTitle>
<Pagination>
<MedlinePgn>3737-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/err025</ELocationID>
<Abstract>
<AbstractText>Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Joshua P</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA. jpa18@msstate.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adeli</LastName>
<ForeName>Ardeshir</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hsu</LastName>
<ForeName>Chuan-Yu</ForeName>
<Initials>CY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harkess</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Page</LastName>
<ForeName>Grier P</ForeName>
<Initials>GP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>dePamphilis</LastName>
<ForeName>Claude W</ForeName>
<Initials>CW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schultz</LastName>
<ForeName>Emily B</ForeName>
<Initials>EB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yuceer</LastName>
<ForeName>Cetin</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>04</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.-</RegistryNumber>
<NameOfSubstance UI="D019881">Aminoacyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000251">Adenosine Triphosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>J41CSQ7QDS</RegistryNumber>
<NameOfSubstance UI="D015032">Zinc</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000251" MajorTopicYN="N">Adenosine Triphosphatases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019881" MajorTopicYN="N">Aminoacyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015032" MajorTopicYN="N">Zinc</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21504875</ArticleId>
<ArticleId IdType="pii">err025</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/err025</ArticleId>
<ArticleId IdType="pmc">PMC3134336</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Plant Physiol. 2006 Feb;163(3):319-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16384624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Mar;45(6):917-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jan;12(1):97-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Aug;54(389):1833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12815036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2005 Aug;31(6):829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jul;123(3):1029-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Nov 8;230(4726):674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17797291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2009 Oct 30;170(2-3):705-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19501960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12909714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Jul 2;569(1-3):140-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15225623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Apr 5;264(10):5598-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2564391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(4):740-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17253989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):225-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1994 Nov 15;223(1):7-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7535022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):71-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19076718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 Feb 15;167(3):169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19765857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1949 Oct;24(4):739-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16654260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 May;141(1):108-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 1998 Apr;2(2):222-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9667939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(8):2205-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Oct 23;283(2):489-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9769220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Jul;35(2):164-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12848823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 1993 Jan;73(1):79-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8419966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Jun 15;18(12):3325-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10369673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2007 Jul;148(1):107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17224228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2008;9:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18325098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Aug;64(6):657-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17534719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Oct;52(363):1959-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11559731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jan 28;269(4):3027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8300635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(2):239-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16608451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2009 Jun;75(11):1468-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19328518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Feb;133(3):541-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1327-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Feb;119(2):543-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9952450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):938-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):2089-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(2):251-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 May 15;453(7193):391-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18425111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2002 Oct;110 Suppl 5:797-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12426134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Mar;116(3):1063-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Nov;118(3):875-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9808732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Nov;25(11):1469-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16105814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Apr;128(4):1359-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jul;123(3):825-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Jun;59(6):1085-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1378-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Apr;225(5):1277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3814-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7110-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10359847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1082-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Apr;54(2):249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18208526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2003;123(1):131-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):961-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Apr;6(4):e1000911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20419142</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État du Mississippi</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Adeli, Ardeshir" sort="Adeli, Ardeshir" uniqKey="Adeli A" first="Ardeshir" last="Adeli">Ardeshir Adeli</name>
<name sortKey="Depamphilis, Claude W" sort="Depamphilis, Claude W" uniqKey="Depamphilis C" first="Claude W" last="Depamphilis">Claude W. Depamphilis</name>
<name sortKey="Harkess, Richard L" sort="Harkess, Richard L" uniqKey="Harkess R" first="Richard L" last="Harkess">Richard L. Harkess</name>
<name sortKey="Hsu, Chuan Yu" sort="Hsu, Chuan Yu" uniqKey="Hsu C" first="Chuan-Yu" last="Hsu">Chuan-Yu Hsu</name>
<name sortKey="Page, Grier P" sort="Page, Grier P" uniqKey="Page G" first="Grier P" last="Page">Grier P. Page</name>
<name sortKey="Schultz, Emily B" sort="Schultz, Emily B" uniqKey="Schultz E" first="Emily B" last="Schultz">Emily B. Schultz</name>
<name sortKey="Yuceer, Cetin" sort="Yuceer, Cetin" uniqKey="Yuceer C" first="Cetin" last="Yuceer">Cetin Yuceer</name>
</noCountry>
<country name="États-Unis">
<region name="État du Mississippi">
<name sortKey="Adams, Joshua P" sort="Adams, Joshua P" uniqKey="Adams J" first="Joshua P" last="Adams">Joshua P. Adams</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D51 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D51 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21504875
   |texte=   Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21504875" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020